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I. INTRODUCTION 

Progress has been achieved through this grant in the study of nonlinear systems which 

generate chaotic 1/f fluctuations, in the application of the Quantum 1/f Theory [1-13] to 

various materials used in small and ultrasmall electronic devices, in the application of the 

Quantum 1/f Theory to electronic devices and in the fundamental Quantum 1/f Theory itself. 

The close similarity of the classical and quantum 1/f theories and the initial 

development of the quantum 1/f theory by the author out of his efforts to quantize his classical 

turbulence theory, have led to sustained efforts of the author aimed to integrate all his theories 

as various forms or realizations of a fundamental notion of chaos in nonlinear systems.   During 

this grant period, these efforts finally beared fruits.   A general sufficient criterion was 

formulated, allowing to identify the nonlinear systems which exhibit 1/f spectra.   This 

criterion is presented in Sec. II below.   It displays for the first time the general mathematical 

principle causing the ubiquitous 1/f spectrum in nature, science and technology.   It is followed 

in Sec. Ill by examples, in which the new criterion is applied to the classical and quantum 

mechanical forms of the author's 1/f noise theory.   These five examples clarify the physical 

meaning of the new criterion. 

Infrared detectors have provided a testing ground for the quantum 1/f theory in the 

eighties, and have been the subject of several quantum 1/f studies.  In Sec. IV we present a 

practical application of the quantum 1/f theory to infrared detectors in the presence of 

radiation, in particular, a proof of the absence of quantum 1/f noise in the process of carrier 

photogeneration in semiconductors.   Quantum 1/f noise is nevertheless predicted by the 

quantum 1/f theory and is present both in junction and MIS photodetectors, in the dark current 

and in the resistance of the homogeneous part of the semiconductors which form the detector. 

Quantum 1/f noise was introduced as the quantum form of the classical turbulence 

process which is a form of chaos.   Quantum 1/f noise is therefore a fundamental and universal 

form of quantum chaos.   The first calculation of the fractal dimension of the quantum 1/f noise 

process presented in Sec. V. 

The quantum 1/f theory has inspired the explanation of the origin of the famous Q"4 law 

of flicker of frequency in quartz crystal resonators by the author, as early as 1978.   He has 

now developed a new method allowing for direct application of the quantum 1/f principle to 

quartz resonators and to other piezoelectric and ferroelectric systems, which is presented in 

Sec. VI.   That section includes the successful practical application of the quantum 1/f theory to 

quartz resonators and the verification of the results at NIST-Boulder with the cooperation of 

Fred Walls.  The quantum 1/f effect appears in the process rate of phonon removal from the 

main oscillator mode of the quartz crystal, because there is bremsstrahlung associated with this 



process in any piezoelectric crystal.  Indeed, as we shall see in Sec. VI, the process will 

suddenly change not only the velocity of the lattice vibration, but also the rate of chance of the 

polarization of the crystal, which in turn is equivalent to sudden electric current change. 

We have tried to improve the application of quantum 1/f theory to the collector noise of 

bipolar transistors.   This short calculation is presented in Sec. VII which also provides a 

comparison of our improvements in the quantum 1/f collector noise formula in ultrasmall BJTs 

with the experimental evidence. 

For the practical application of the Quantum 1/f Theory it is necessary to derive the 

quantum 1/f fluctuations of various kinetic (transport) coefficients which characterize the 

materials used in electronic and microelectronic applications (mobility, diffusion coefficient), 

from the author's fundamental quantum 1/f formula.   The latter is applicable only to cross 

sections and rates of elementary processes.   Most important is the calculation of mobility 

fluctuations in Si, GaAs and Hgi-xCdxTe.  An earlier calculation (Kousik, Van Vliet, Handel, 

1985) of mobility fluctuations in Si and GaAs is replaced in Sec. VIII by a more rigorous 

calculation, based on the new quantum 1/f cross-correlations, developed under the previous 

AFOSR Grant, and presented in the Final Technical Report AFOSR -85-0130.  The new 

calculation yields increased 1/f noise, and is in vey good agreement with the experiment.   The 

results give the quantum 1/f noise present in various carrier scattering mechanisms as a 

function of temperature and doping level. 

The progress achieved in the fundamental quantum 1/f theory includes the direct 

derivation of the Coherent Quantum 1/f Effect from a special quantum-electrodynamical 

propagator known since 1975, and from the sufficient 1/f criterion introduced in the 1992 

(Third) Annual Report (Sec. II).   The physical meaning of the coherent quantum 1/f effect is 

displayed by this new independent derivation as a consequence of the indefinite energy of a 

physical electron. 

At the same time, many new contributions to quantum 1/f theory and experiment were 

published by other workers in the field, considerably advancing the field of infra-quantum 

physics and quantum 1/f noise in high-technology applications.   These new contributions, as 

well as new PhD thesis work in this field and contributions presented at the "4th Conference on 

Quantum 1/f Noise and other Low-Frequency Fluctuations" (Minneapolis 1990), at the 5th (St. 

Louis, 1992) and at the X, XI and XII Int. Conf. on Noise in Physical Systems (Budapest, 1989, 

Kyoto, 1991, St. Louis, 1993) are all included in the updated General Quantum 1/f 

Bibliography appended to this Report.   My collaborators have been A.L. Först-Chung, E. 

Bernardi, T. Chung, L.M.N. Sastri, X. Hu, Jian Xu, Y. Zhang, and M. Leong. 



II. SUFFICIENT CRITERION FOR 1/F NOISE IN CHAOTIC NONUNEAR SYSTEMS 

Consider a n-dimensional nonlinear system described in terms of the dimensionless function 

Y(x,t) by the mtn order nonlinear dynamical equation 

dY/dt + F(x, Y, dY/dx-| ...dY/dxn, d2Y/dx-j2 dmV/dxn™) = 0 (1 ) 

If 
F[\x, Y, dY/(\dx-|)...dY/(Xdxn), d2Y/(Xdx-| )2 dmY/(Xdxn)m] 

= A.PF(x, Y, dY/dx-i ...dY/dxn, d2Y/dx-|2 dmY/dxn
m) ( 2 ) 

for any real number X, Eq. (1) is said to be homogeneous.   Performing a Fourier transformation 

with respect to the vector x, we get in terms of the Fourier-transformed wavevector k the 

nonlinear integro-differential equation 

dy(k,t)/dt  +  G[k, y(k,t),  k-, y(k,t)...kny (k.t),  k1
2y(k,t) kn™y(k,t)] = 0, (3) 

where y(k,t) is the Fourier transform of Y(x,t).   Due to Eq. (2), G satisfies the relation 

G[Xk, y, A.kiy..Akny, (Xk-,)2y (A.kn)™y] 

= XPG[k,y, kiy...kny, k^y knmy].       (4) 

Eq. (3) can thus be rewritten in the form 

dy/d(t/XP) + G[Xk, y, \k, y...Xkny, (Xk-, )2y (Xkn)my] = 0, ( 5 ) 

Taking X.=1/k, where k=|k|=(xl
2 + ....+xn

2)1/2, and setting kPt=z, we notice that k has been 

eliminated from the dynamical equation, and only k/k is left.  This means that there is no 

privileged scale left for the system in x or k space, other than the scale defined by the given 

time t, and expressed by the dependence on z.  We call this property of the dynamical system 

'sliding-scale invariance". 

In certain conditions, instabilities of a solution of Eq. (1) may generate chaos, or turbulence. 

In a sufficiently large system described by the local dynamical equation (1), in which the 

boundary conditions become immaterial, homogeneous, isotropic turbulence, (chaos) can be 

obtained, with a spectral density determined only by Eq. (1).   The stationary autocorrelation 

function A(x) is defined as an average over the turbulent ensemble 



A(x) = <Y(x,t)Y(x,t+x)> = |<y(k,t)y(k,t+x)>dnk = Ju(k,z)dnk (6) 

Here we have introduced the scalar 

u(k,z)  =  <y(k,t)y(k,t+T)> (7) 

of homogeneous, isotropic chaos (turbulence), which depends only on |k| and z=kPx. All 

integrals are from minus infinity to plus infinity.   The chain of integro-differential equations 

for the correlation functions of any order obeys the same sliding-scale invariance which we 

have noticed in the fundamental dynamical equation above.   Therefore, in isotropic, 

homogeneous, conditions, u can only depend on k and z. Furthermore, the direct dependence on k 

must reflect this sliding-scale invariance, and is therefore of the form 

u(k,z) = k"nv(z). ( 8 ) 

Indeed, only this form insures that u(k,z)dnk and therefore also the corresponding integrals and 

multiple convolutions in k space have the necessary sliding-scale invariance. 

According to the Wiener-Khintchine theorem, the spectral density is the Fourier-transform 

of  A(t), 

Sy(f) = je2*ifxA(i)dT = (1/f) Je2jlit'Ik-nv(z)dnk'dt' = C/f, (9) 

where we have set ft=t', kn=fk'n, z=kni=k'nt', and the integral 

C = Je27cit'Ik'-nv(z)dnk,dt' = je^it'jk-nvfk-njdrVdt' (10) 

is independent of f.   We have defined the vector k"=t'1/n k. 

In conclusion, we have shown that if the equation 

dY/dt + F(x, Y, <JY/dx1...dY/dxn. d2Y/dx1
2 dmY/dxn

m) = 0 (11) 

with 

F[kx, Y, dY/(Xdxi)...dY/(Xdx)n, d2Y/(Xdx-()2 dmY/(Xdxn)m] = JLPF(X, Y, 

dY/dx-, ...dY/dxn, d2Y/dx-,2 dmY/dxn
m) (12) 

admits, in the limit of weak dissipation, quasistationary homogeneous isotropic chaotic 

(turbulent) solutions which are practically independent of the nature of the instabilities or 



bifurcations (or even stirring forces) which have caused the chaotic state, the corresponding 

spectral density must be proportional to 1/f. 

We note that the solution (7) leads to a weak (logarithmic) divergence of the integral over k 

in the last form of Eq. (6) and in Eq. (9).   This seems to contradict the fact that in practical 

applications the autocorrelation function A(t) is finite, and its value at t=0 is usually given in 

the problem at hand.   However, in practice one never deals with an infinite volume, and the 

physical wave-vectors are also limited.   For instance in fluid dynamics, wave vectors exceeding 

the reciprocal average distance between neighboring fluid molecules correspond to thermal 

motions, and are therefore no longer meaningful for the hydrodynamic treatment.   Due to its 

logarithmic character, the divergnce is thus without practical importance.   Nevertheless, for a 

given level of chaos A(0), we can construct an approximate solution 

u(k,z)=kr-nv(z), (13) 

with 0<r«1, which avoids the divergence at k=0.  To get the correct chaos level with k<k0, k0 

being an upper cutoff, we set 

u = r[A(0)/v(0)]ko-rkr-nv(2). (14) 

This yields for t=0 the result A(0) when we integrate over dnk with an upper limit k0.   We 

notice that r is present both as a general factor, and as a small defect in the exponent of k.  This 

is a general feature, present both in classical and quantum nonlinear systems with 1/f noise.   In 

the limit r-»0, the approximate solution tends to become exact.   In the classical homogeneous, 

isotropic, turbulence theory, r can be arbitrarily small, while in the quantum 1/f theory 

(quantum electrodynamics), r « aA « (2a/3;:)(Av/c)2 « 1/137 is the well-defined infrared 

exponent of the process, with a-e2/nc= 1/137, as we know from the theory of infrared 

radiative corrections.   This allows us to formulate the justification of our criterion in a way 

used by the author for the first time in 1981 in an unpublished paper which was reviewed in 

that year by T. Musha and CM. Van Vliet: Homogeneous nonlinear systems require the 1/f 

spectrum because this is the only one which is idempotent with respect to the self-convolution 

operation in the limit of very small r values.   Indeed, the result of the multiple self- 

convolutions introduced by the Fourier transformation of a nonlinear term is again 1/f1"r with 

a very small r, if the input was a 1/f1"r with a very small r. 



III. EXAMPLES ILLUSTRATING THE APPLICATION OF THE GENERAL SUFFICIENT 

CRITERION FOR 1/f NOISE IN CHAOTIC NONLINEAR SYSTEMS 

In spite of the practical success of our quantum 1/f theory in explaining electronic 1/f 

noise in most high-tech devices, and in spite of the conceptual success of our earlier classical 

turbulence approach to 1/f noise, the question about the ultimate origin of nature's omnipresent 

1/f spectra remained unanswered. During the last three decades, we have claimed repeatedly 

that nonlinearity is a general cause of 1/f noise. Our new criterion proves that nonlinearity 

always leads to a 1/f spectrum if homogeneity is also present in the equation(s) of motion. We 

can present this criterion, derived in the preceeding section, in a more general form. 

Specifically, let the system be described in terms of the dimensionless vector function Y(x,t) 

by the mlh order nonlinear system of differential equation 

0[t, x, Y,3Y/3t, 3Y/3x-|...3Y/3xn, 32Y/3t2, 32Y/3x-|2 3mY/3xn
m] = 0 (1 ") 

where the vector function O may be nonlinear in any of its arguments.   If a number 9 exists 

such that Eq. (1') implies 

4>[Xe\, k, Y, 3Y/Xe3t, 3Y/A3X-! ...3Y/X3xn, d2Y/X26d\2, 

32Y/X23x-,2 3mY/^m3xn
m) = 0 (2') 

for any real number X, the power spectral density of any chaotic solution for the vector function 

Y defined by Eq. (V) is proportional to 1/f. 

In conclusion, nonlinearity + homogeneity = 1/f noise. The ultimate cause of the 

ubiquitous 1/f noise in nature is the omnipresence of nonlinearities (no matter how weak) and 

homogeneity. The latter is finally related to rotational invariance and to the isotropy of space. 

All our four specific theories of 1/f chaos in nonlinear systems are just special cases to which 

our criterion is applicable. They include our magneto-plasma theory of turbulence in intrinsic 

symmetric semiconductors (1966, [14-16]), our similar theory for metals (1971, [17]), 

the quantum 1/f theory (pure quantum electrodynamics, 1975, [1-13]), and the theory of 

Musha's traffic turbulence (1989). A fifth, negative, application example concerns a one- 

dimensional crystal, i.e., a chain of atoms with slightly anharmonic interaction potentials, in 

which the criterion indicates the absence of a lattice-dynamical 1/f spectrum, in agreement 

with computer simulations by Musha and with analytical calculations by Koch and Wolf. 

The general criterion developed in the preceeding section will now be illustrated on the 

basis of the examples mentioned above. 



111.1    Classical   Turbulence   Theory   for   the   Current 

Carriers    in    Semiconductors 

In the case of homogeneous, isotropic turbulence [14-17] caused in the electron-hole 

plasma of an infinite sample of a symmetric intrinsic semiconductor by dynamical instabilities 

of any kind, we start from the equations 

vv+   =  (e/2c)v"xB   - (1/n)VP, (15) 

w = 2e[E + v + xB/c]  - (2/n)V(Pp - Pn), (1 6) 

V-v+ = 0 (n = const), (1 7) 

V xE   =  -(1/c)3B/3t, (18) 

V xB = 27ienv7c, (19) 

V-B = 0. (20) 

Here n is the total carrier concentration including an equal number of electrons and 

holes, v/e their reciprocal mobility assumed to be the same for electrons and holes, Pn and Pp 

the partial pressures of electrons and holes, P the total carrier pressure, 2v+' v" the sum and 

the difference of the carrier drift velocities.   Inertial terms proportional to the effective 

masses of the carriers, as well as electrostatic terms and compressibility terms have been 

neglected here in a consistent way [14-17], because we are interested in the low-frequency 

domain only. Although we do not work this out here, this system of equations can be shown to 

admit an energy theorem.   Performing a Fourier expansion, we obtain 

w+(k)   =   (e/2c)Z k,v(k')xB(k-k')  -  (i/n)k-P(k), (21) 

w(k)   =2e[E(k)+ X k,v+(k,)xB(k-k,)/c]-(2i/n)k(Pp-Pn), (22) 

k-v + (k)  = 0. (23) 

ik xE(k)   =   -(1/c)3B(k)/at, (24) 

1 0 



ik xB(k) = 2:renv-(k)/c, (25) 

k-B(k) = 0, (26) 

Substituting  E from Eq. (22) into Eq. (24), we obtain with Eq. (25) 

3B(k)/3t + u.k2B(k) = ikx Sk1 v+(k') xB(k-k'), (27) 

where u. = c2v/47tne2.   Eqs. (21) and (25) yield 

v+(k)  =  (i/4nvn) Z k"{B(kM)[k"B(k-k")] - k"[B (k")B (k-k")] 

(28) 

-(k/k2)(l-5k,o)[k"B(k-k") kB(kM) - B (k")B (k-k")  (k-k")]} . 

Substituting this into Eq. (27), we obtain the fundamental dynamical field-equation of 

turbulence in the electron-hole plasma of a symmetric intrinsic semiconductor 

3bß(k,t)/3t + u.k2bß(k,t) = Ik'k" bj(k-k'.t)  b|(k",t)  bm(k'-k",t) 

(29) 

■(kj5ßs-ks5ßj)[ks5|m-km"5|s +  (ks7kl2)<1 -8k\0)(km Hkr-k'-k"5|m)], 

in terms of b = B/V27tvn.   This dynamical equation has the form of Eq. (3), with p=2 in Eq. 

(4), and with G defined as the r.h.s. minus the term in k2 on the l.h.s.. Our sufficient criterion 

thus tells us that this nonlinear system will yield a 1/f spectrum.   We present below the direct 

derivation for this example. 

Multiplying Eq. (29) with ba*(k,t-t) and taking the average over a statistical 

ensemble which represents our notion of stationary turbulence, we obtain in quasi-stationary 

conditions 

awaß(k,x)/9t + u.k2waß(k,t) 

= Zk'k"<ba*(k,t-t)bj(k-k,,t)b|(k-,t)bm(k,-k"1t)>Rjm|ß> (3 0) 

1 1 



with waß(k,i) = (L/27t)3<ba*(k,t-T)bß(k,t)>, where L is the edge of the cubic normalization 

box, and 

Rjmlß =(kj5ßs-ks8ßj)[ks5|m-km"5|s +(ks7k'2)(i -5k'(o)(km"k|,-k,-k"5|m)]. (31 ) 

Multiplying Eq. (29) with more magnetic field components and averaging, we obtain 

equations connecting the fourth-order correlation tensor to the sixth-order tensor, and so on 

[14-17].   To end this infinite chain of equations for the correlation functions, we make a 

quasinormality assumption which expresses the fourth-order moment appearing in Eq. (30) 

according to the scheme 

<ABCD> = <AB> <CD> + <AC> <BD> + <AD> <BC>, (32) 

valid if the four field components would approximate a joint normal distribution.   This 

approximation does not alter the homogeneity of the system, which ultimately causes the 1/f 

spectrum.  This approximation yields the closed equation 

3waß(k,-c)/aT + u.k2waß(k,x) 

-^n/uSwajlk.TjIk'wimfk'.OJRjmlßfk.k'). (33) 

Isotropie turbulence requires waß = A-|(k)5aß + A2(k)kakß, with coefficients Ai and A2 

related through Eq. (26), yielding 

waß(k,t)=   (1/2)[50ß - kakß/k2)u(k.T), (34) 

where u(k,i) = Sawaa(k.T)-    Therefore, the scalar correlation function u(k,x) satisfies the 

dynamical equation of homogeneous, isotropic, stationary turbulence 

9v(k,x)       „    v 1    ,    ,fd3k' k^kk'r,   /kk\p-,   ,, , ni /nr, 
3W    + vM = " iv(k-x)J^T^7^[l-(i^r)  ]v(k '0)' (35) 

where v(k,x)Hk"3u(k,t), and x = jrtk2 is a dimensionless variable replacing x.   We convince 

ourselves that the integral is independent of k, provided v(k,x) does not depend on its first 

argument, by setting k'/k=K.   This yields a solution.   However, with v=e"mlxl we get a 

logarithmic divergence at K=0.   We look for an exact solution of the form [14-17] 
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v(k,x)   =  hk£e"lxlm(k),   or u(k,x)   =   (h/k3"E) e-l
xlm(k), (36) 

where m(k) is very close to a constant, almost independent of k, and h is a constant proportional 

to the intensity of the turbulence, or the turbulence level.   Substituting this into Eq. (35) and 

performing the integration, we obtain a finite result only for 0<e<2: 

m(k)  =  1   +  h  r(e)k£,  with  r(e) = [27r2cotan(eji/2)]/[(1 -e2)(3-e2)]. (37) 

We notice that m(k) is indeed practically constant when 0<e«1 is very small, arbitrarily 

small.  The value e=0 leads to a logarithmic divergence, but we can set e=0 for practical 

purposes. 

The spectral density corresponding to Eq. (36)   with e=0 is 

oo 

waß(") = (1/JI) JcosuTdx   waß(k,i:)d3k 
0 j 

oo oo 
oo 

-f 8aß Jk2dkjdi u(k,i)COScox =|h5aß Jw2^
d
2

k
k2 =|^5aß. (38) 

This is a 1/f spectrum.  At the low frequency end we do not get a divergent spectral integral, 

because the more exact form of the spectrum with a finite small e«1 is [14-17] 

mk1+Edk   _ 1 [YLlidx 
co2 + m2k4   "  C01-£/2mE/2 J  1+x4   • (39) 

0 

which is proportional to f^2"1.   It is interesting to note that for e«1 cotan z%l2 = 2IZK in Eq. 

(37), and that the value of e calculated from Eq. (37) is therefore proportional to h, or to the 

intensity of the turbulence.   This feature of the classical theory [14-17] is expressed with 

fascinating clarity in the quantum form of the theory, where e is replaced by 2aA which also 

appears as a intensity factor multiplying the quantum 1/f noise. 

The essential element which led to the 1/f spectrum in the classical turbulence theory is 

the nonlinearity of the equations of motion, caused by the reaction of the electric currents back 

on themselves via the generated electromagnetic field. The same feedback reaction, via the 

electromagnetic field, also caused the nonlinearity in the quantum 1/f theory, and in QED in 
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general, leading in the same way to an identical 1/f spectrum, this time with a physically more 

meaningful e=2aA.  This nonlinearity induces the coupling between various scales of turbulence 

and leads to the dynamical equilibrium between eddies of all sizes, expressed by the 1/f 

spectrum.   In the e=0, or aA=0, limit, this dynamical equilibrium assumes both for the 

quantum case and for homogeneous, isotropic, turbulence in the unbounded semiconductor 

sample the simplest form, characterized by scale-homogeneity, or scale invariance.   Indeed, 

replacing for e=0 in Eqs. (35) and (36) k and k' by Xk and Xk', while also replacing x by x/X2, 

(or co by X2oi), Eq. (35) is not affected, and X drops out.  We conclude that in the weak 

turbulence limit (e=0) we obtain perfect self-similarity of the turbulence process at all scales 

in space and time, classically and quantum-mechanically.  The implied scale invariance is 

caused by the absence of any characteristic length or time scale, or by the presence of a sliding 

scale.  Indeed, the frequency scale u.k2 is a function of the size of the eddies, given by the wave 

number k which can have any value. The actual frequency and wave-number spectra are closely 

related fractals, but in the weak-turbulence limit they approach an exact 1/f and 1/k3 

spectrum respectively.   In fact, we are here understanding the nonlinear dynamics which 

shapes this fractal for the first time. 

III.2   Turbulence   Theory   for   Drude   Electrons   in   Metals 

Our classical turbulence theory can be extended to the case of metals or degenerate 

extrinsic semiconductors [17] in the Drude free electron gas model.   The system of integro- 

differential equations is quite different, 

vv+  = -eE  - (e/c)vxB - (1/n)VP                                                                          (4 0) 

VxE  = -(1/c)3B/öt (4 1 ) 

VxB   = -(4;ien/c)v (42) 

V-B = 0, (43) 

and leads to a third-order nonlinearity [17] in the resulting closed equation of motion, or 

nonlinear field-equation, which replaces Eq. (28): 

3B(k,t)/3t + vk2B(k,t)  =  -(c/47tne)kx}d3k'B(k-k',t)x[k'xB(k',t)]. (44) 
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This is again in the form of Eq. (3), with p=2 in Eq. (4).   We thus expecta 1/f spectrum in this 

system as well.   This time we only sketch the derivation.  The corresponding infinite chain of 

equations for the correlation tensors now goes in steps of one. As was shown above, it went in 

steps of two for semiconductors.  The third-order correlation can be eliminated between the 

first and second equations in the chain.  The resulting dynamical equation [17] for homogeneous, 

isotropic, stationary turbulence, which replaces Eq. (35), with the same notations, using e3 as 

the unit vector of the third axis, is 

32v(k,x) 

3x^ 
1 fd3K 1+K-e3r^  (K-e3)2i p 2 = - öJ^r; :dl- ?—Jv(Kk,K^x)v(k|e3 + K|,x|e3 + KK). (45) 
^  K

J
 |e3+ K|^* K^ 

This also admits, in the e=0 limit of weak turbulence, a solution v(k,x) which does not 

depend on the first argument, and u(k,x) = k~3e"xm(x), this time with an x-dependent m. 

With   the change of variables t=cin and k'=k/Vco in the second (middle, involving u) form of Eq. 

(38), x remains invariant, and a factor 1/w will appear in front of the integrals which 

themselves will just yield a constant factor independent of co, x or k. We thus obtain again a 

universal 1/f spectrum.   As is shown in detail elsewhere [17], this 1/f spectrum is expressed 

in the corresponding current and voltage fluctuations which can be observed in the semiconduc- 

tor or metallic medium.   We conclude that the 1/f spectrum is a general property of electrically 

conducting systems in interaction with the electromagnetic field, a property which is caused by 

the nonlinearity of the system of carriers and field in mutual interaction due to the absence of a 

characteristic scale in the nonlinear equation of motion, and which finds its clearest expression 

in the Quantum 1/f Effect. 

III.3   Theory   of   Highway   Traffic   Fluctuations 

Musha and Higuchi [18,19] discovered the 1/f spectrum of highway traffic fluctuations 

empirically in 1977, also developing a model based on a postulated linear dependence of the 

average traffic speed v on the linear concentration of cars n(x) on the road, v=v0(1-n/ns). 

The model was recognized to be similar to Burger's model of turbulence, and was simulated 

numerically leading to a 1/f-like spectrum at low frequencies. 

The present paper develops a statistical turbulence theory for the Musha model, showing 

how in the low wave number and low frequency limit a universal 1/f spectrum emerges. In this 

limit, this is a particular case of the author's sliding-scale-invariant class of nonlinear 
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systems, all characterized by the presence of a universal 1/f spectrum.   The author's classical 

and quantum 1/f theory is another example in the same class. 

Musha writes the traffic current J as a sum of drift and diffusion currents 

J = nv - D3n/3x = nv0 - (v0/ns)n2 - D3n/3x, (4 6) 

where D is a "diffusion coefficient".   The equation of continuity is [8,9] 

o = an/at + aj/ax = (a/at + v0a/ax)n - 2(v0/ns)nan/ax -Da2n/ax2. (47) 

This is Musha's fundamental equation of traffic dynamics, which also was written [18] in a 

system of reference defined by 

x' = -x + v0t, t' = t (4 8) 

in the final form [18] 

an/at'+ anan/ax' = Da2n/ax'2, (4 9) 

where a = 2v0/ns- 

We normalize the concentration to ns/2, the coordinate along the road x to D/v0, and the 

time to D/v0
2, thereby obtaining the dimensionless form of the fundamental traffic-dynamical 

equation 

3n(x,t)/at +  n(x,t)3n(x,t)/3x » 32n(x,t)/ax2, (50) 

where we did not bother to change the notation, and returned to the original unprimed notation. 

Expanding in a Fourier series over the interval L, we obtain 

an/at + iZk'k,n(k')n(k-k')   =   -k2n(k,t). (51) 

Comparing Eq. (50) with Eqs. (1).(2), or Eq. (51) with Eqs. (3),(4), we notice that 

this time our criterion is not satisfied, due to the r.h.s. term.   However, in the limit of small k 

that term becomes negligible, and thus, our criterion becomes applicable, and we should get a 

1/f spectrum in the low frequency limit.   This would correspond to p=1 in Eqs. (2) and (3). 

We derive this 1/f spectrum below. 
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Defining the autocorrelation function 

A(^t) = <n#(x,t)n(x+^t+x)> =Zk<n*(k,t)n(k,t+x)>eik^ =EkU(k,x)eik^,     (52) 

as a turbulent ensemble average <...>, in quasistationary homogeneous conditions we obtain by 

multiplication of Eq. (51) with n*(k, t-x), after ensemble averaging, 

3U/3x +k2U(k,x) + iSk'k'<n*(k,  t-x)n(k',t)n(k-k',t)>  =0. (53) 

Linking the complex function U(k,x) to a third-order correlation function, this is the first 

equation of an infinite chain of equations connecting the Ntn order to the order N+1 correlation 

function.   Applying the operator -3/3x +k2 to Eq. (53), and using the complex conjugate of Eq. 

(51) to define the action of this operator on the first factor inside the averaging brackets in Eq. 

(53), we obtain 

-32U/3x2 + k4U = -iZk'k,<[iZk"k"n*(kM,t-x)n*(k-k",t-x)]n(k,,t)n(k-k',t)> 

= Zk'ik"k1k"[U(k",0)U(k',0)5k,0   +U(k\T)U(k-k\T)5k"k'   +U(k\x)U(k-k\x)8k",k.k']. 

(54) 

The last form was obtained by approximating the fourth-order correlation function with its 

expression in terms of the second-order correlation applicable for Gaussian processes: 

<ABCD> = <AB><CD> + <AC><BD> + <AD><BC>. (55) 

This approximation was used by Heisenberg [20) in his turbulence theory, and was successfully 

verified in its practical applicability by Uberoi [21] and Batchelor [22]. 

In the limit L-»«, setting U(k,x)U2^= u(kx), we write for k*0 Eq. (54) in the form 

-32u/3x2 + k4u = J[k,2u(k\i)u(k-k\   i)   ->   k'(k-k,)u(k',x)u(k-k,,x)]dk' 

or 

-d2u(k,x)/3x2 + k4u(k,x) = kjk,u(k,,x)u(k-k\   x)dk'. (56) 

This is our fundamental dynamical equation of traffic turbulence.   All unspecified limits on 

integrals are from -°o to», as we mentioned earlier.   From the symmetry A(^,x) =A(-^,-x) 
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=A (£,T) we see that a physically acceptable solution of this equation must satisfy the 

conditions 

u(k,T)   =   u(-k,-x) = u*(-k,-x) =  u*(k,-x). (57) 

A solution of the form 

u(k,T) = V(k)e-imkx, with V(k) = V(-k) = V*(k) (5 8) 

where m is a real constant, substituted into Eq. (56), yields 

k(m2 + k2)V(k)  = Jk,V(k,)V(k-k,)dk'. (59) 

In the low wave number region k«1 (i.e., k«v0/D) we neglect the k2 term which arises from 

diffusion, and get 

-U- m^kV(k)  = Jk,V(k')V(k-k')dk'. (60) 

A solution V(k) = C|k|E-"l, with arbitrarily small e>0, yields the value of C, independent of k 

only in the limit of e-»0: 

m 2/C =    Jk'|k'|e-1|1-k7k|e-1dk7k   =|k|e   Jic|K|e-l|1-ic|E-',dK 

2 

= |k|e J|K|E|1-K|^-1dK - 2/e - I - const, (6 1 ) 
0 

where we used the substitution k7k=K.  The divergence at e=0 disappears when we return to a 

finite value of the maximal road   length L, which corresponds to a minimal k (or k') value 

k0=27t/L, and transforms the integrals back into sums. 

Eq. (61) establishes a proportionality between the level of the turbulence,described by 

C, and the magnitude of the small parameter z as in earlier turbulence calculations [14-17]. 

The same fundamental feature is more clearly expressed, without the pseudo-singularities 

present here, in the quantum 1/f theory [1-13], where e becomes the infrared exponent aA 

known from quantum electrodynamics.   Indeed, aA is present there, just as we see it come in 
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here, both as a factor in front of the final result, and as a small defect in the exponent of the 

frequency.   We also mention that the apparent absolute determination of C by Eq. (61) is just an 

artifact which reminds us that we omitted a source term in Eqs. (47), (49-51), (53-54), 

(56), which comes in as a 5 function of time, h(k)5(t) on the r.h.s. of Eq. (53), only if we 

assume the excitation in Eq. (47) to depend on time like white noise.  Once that source term is 

written explicitly, it will allow us to determine C as this was done earlier [14] for a different 

equation, and it does not affect our equations for x * 0. 

We can rewrite Eq. (52) in the form 

A(5,T) ^ <n*(x,t)n(x+£,t+x)> = IkU(k,x)eik^ = Jdk  u(k,x)eik£ 

= CJeik^-mx)|k|e-1dk = |^-mx|-E(m2/l)JeiK|K|e-1dK = m2|^-mx|-£. (62) 

Here we have used the substitution k|^-mx|=K, and we have taken the limit e^O in the integral 

and in I, noting that they exhibit the same divergence, and therefore can be simplified in the 

limit.   The cancellation of the divergences in the expression of the autocorrelation function 

shows that this important function is finite even in the continuum limit.   It is only the spectral 

distribution of turbulence which exhibits a singularity at low wave numbers and frequencies. 

Since only the limit e=0 satisfies the fundamental dynamical equation of traffic 

turbulence, Eq. (62) means that the autocorrelation function is a constant.   It also indicates that 

the constant has to be interpreted as the limit of a slowly decreasing power law which depends 

only on |£-x|; therefore the spectrum in wave numbers is the same as the spectrum in 

frequencies.   The Fourier transform with respect to x is the spectral density 

Sn'(q.co) =J<n*(x1t)n(x+^,t + x)>eiü}Xdx = CJ J(dk/|k|1-e)eik(^-mx)+iuxdx. (63 

To leave the moving (primed) frame and return to the system of reference at rest, we replace co 

by co-kv0 in the last integrand, actually just by w-k in our (v0=1)   normalization: 

Sn(^.cü) =J<n*(x,t)n(x+$,t+x)>e'(w-kv.)Tdx 

= CjJ(dk/k1-E)eik^-m'c)+i(ü>-k)xdl- (64) 

The spectral density of concentration fluctuations in a given point is obtained by setting ^=0. 

The integration with respect to x yields a delta function 27t5[co-(m+1)k], and we finally obtain 

the spectrum 
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Sn(0,ü>)   =   C[(m+1)/co]1-e (65) 

where again the constant will turn out to be finite when we coarse grain the integrals.   As 

mentioned above, the constant will actually be determined by the excitation term omitted in Eq. 

(56). 

According to Eq. (2) we can write J(k,co) = (co/k)n(k,co) in the system at rest. 

Therefore, for J we include a factor (co/k)2 into the integrand of Eq. (64), and we get again the 

spectrum 

Sj(^,cü)=J<J*(x,t)J(x+^t+T)>ei(w-kVo)xdl 

= cJJ(cD2dk/k3-e)eik^-m^+i(cö-k)Tdx; (66) 

Sj(O.o))   =  C(m+1)2   [(m+1)/co]1-E =   Const/co. (67) 

Due to the neglect of the k2 term in Eq. (59), the universal 1/f spectrum will be 

limited towards high frequencies by co<v0
2/D, and the 1/k-spectrum by k<v0/D.   This 

limitation occurs because only Eq. (60) satisfies the condition of being free of any 

characteristic scale, thus exhibiting our sliding scale invariance [23], while Eq. (59) does not 

have this property.   We have thus constructed a statistical dynamic theory of traffic turbulence, 

proving analytically Musha's earlier result, without any pretension of mathematical rigor. 

Traffic turbulence arising from instabilities of the laminar traffic flow can be considered as a 

form of classical fluid-dynamical chaos. 

III.4   Quantum   1/f   Noise:   Application   of   the   Sufficient 

1/f   Criterion   to   QED   Quantum   1/f   Chaos 

The nonlinearity causing the 1/f spectrum of turbulence in both semiconductors and 

metals is caused by the reaction of the field generated by charged particles and their currents 

back on themselves.   The same nonlinearity is present in quantum electrodynamics (QED), 

where it causes the infrared divergence, the infrared radiative corrections for cross sections 

and process rates, and the quantum 1/f effect.  We shall prove this on the basis of the sufficient 

criterion for 1/f spectral density in chaotic systems, derived in the previous annual report. 

Consider a beam of charged particles propagating in a well-defined direction which we 

shall call the x direction, so that the one-dimensional Schrödinger equation describes the 

longitudinal fluctuations in the concentration of particles.   Considering the non-relativistic case 
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which is encountered in most quantum 1/f noise applications, we write in second quantization 

the equation of motion for the Heisenberg field operators y of the  in the form 

iMy/at   =   (1/2m)[-ihV  -(e/c) A]2y, (68) 

With the non-relativistic form J = -ihy'Vy/m + hermitic conjugate, and with 

A(x,y,z,t)   =   (h/2cmi)K7-yyW (69) x-x 

we obtain 

inav/3t   =   (1/2m)[-ihV  -(eh/2c2mi) J[v ^i^T^-T^ W] V (70) 

At very low frequencies or wavenumbers the last term in rectangular brackets is dominant on 

the r.h.s., leading to 

ih3v/3t   =   (-1/2m)[(eW2c2m) KV^'W] %. (71) I x   x | 

For x replaced by Xx, and x' replaced by Xx', we obtain 

ihaV/at   =   (-1/2m)[(ery2c2m)J(v'V/^x"Vx
V

|
av'^3dx-]2¥ = X2Hw = x-pHv. (72) 

This satisfies our homogeneity criterion with p=-2.    Our sufficient criterion only requires 

homogeneity, with any value of the weight p, for the existence of a 1/f spectrum in chaos. 

Therefore, we expect a 1/f spectrum of quantum current-fluctuations, i.e., of cross sections 

and process rates in physics, as derived in detail in Sec. II above.  This is in agreement with the 

well-known, and experimentally verified, results of the Quantum 1/f Theory. 

In conclusion, we realize that, both in classical and quantum mechanical nonlinear 

systems, the limiting behavior at low wave numbers is usually expressed by homogeneous 

functional dependences, leading to fundamental 1/f spectra on the basis of our criterion. 

Therefore, we expect a 1/f spectrum of current fluctuations, i.e., of cross sections and process 

rates in physics.   This is in agreement with the well-known, and experimentally verified, 

results of the conventional Quantum 1/f Theory. 

In conclusion, we realize that, both in classical and quantum mechanical nonlinear 

systems, the limiting behaviour at low wave numbers is usually expressed by homogeneous 
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functional dependences, (as shown in Eq. 2), leading to fundamental 1/f spectra on the basis of 

our  criterion. 

III.5 ABSENCE OF 1/F FLUCTUATION SPECTRA FOR MODE ENERGY AND PHONON 

NUMBER IN A NONUNEAR CHAOTIC CHAIN OF ATOMS 

Consider a chain of atoms in the x direction, with a lattice constant b and displacements 

qi from the equilibrium position.   The equations of motion 

md2qn/dt2 =  A[(qn + 1-qn)-(qn-qn-1)] + B[(qn + 1 -qn)2-(qn-qn-1 )2] + 

+   C[(qn + l-qn)3-(qn-qn-l)3] (73) 

contain anharmonic terms as long as B and C are different from zero.   With an=qn+i-qn and 

ßn=qn-qn-i. neglecting the second-order term, we obtain 

md2qn/dt2= [(qn + i-qn)-(qn-qn-l)][A + B(qn+-|-qn-i) + C(an
2+anßn+ßn2)]-     (74) 

Going over from finite differences to a continuum description, we obtain a differential equation 

for   q(x,t) 

m32q/3t2 = b232q/9x2[A + bB3q/3x + 3Cb2(3q/3x)2]. (75) 

Performing a fourier transform with respect to x, 

m82qk/9t2= -Ab2k2qk - ib2B/(k-k^k^qk-qk-k^dk' 

*  3Cb4|dk'jdk"k'k"(k-k,-k")2qk.qk.qk.k..k.. (76) 

All integrals are from minus infinity to infinity.    Substituting qk=u(k,t)exp[ikbt(A/m)1/2], 

md2u/d\2   +  2ikb(A/m)1/29u/at = -ib3B J(k-k,)k,2uk'Uk.k'dk' 

+ 3Cb4jdk,Jdk"k,k"(k-k,-k")2uk-uk"Uk.k'.k". (77) 

our 1/f chaos criterion requires both nonlinearity and homogeneity, as well as the presence of 

chaos or of a quasichaotic state.   The nonlinearity condition is satisfied unless B=0 and C=0, 
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while homogeneity requires the existence of two numbers p and 9 such that replacing k by Xk 

everywhere except in the integration differentials, and replacing t by Xet leaves the equation 

multiplied by a general factor \P, i.e., formally invariant. In our case we note that homogeneity 

would be is satisfied with p=2 and 8=-1 only if we neglect both the second-order and third- 

order terms by setting B=C=0, which would violate the nonlinearity requirement, in 

conclusion, our criterion can not be satisfied. 

Nevertheless, in three-dimensional piezoelectric crystals quantum 1/f fluctuations of 

the phonon number are predicted by the electrodynamic quantum 1/f noise theory as we show in 

detail in Sec. VI, and have been observed experimentally in the Brillouin scattering of light by 

T. Musha. These quantum 1/f fluctuations are predicted by the sufficient criterion as we have 

seen in Sec. III.4. 

IV. PRACTICAL APPLICATION TO QUANTUM 1/f NOISE IN INFRARED DETECTORS 

Quantum 1/f Noise is a fundamental aspect of quantum mechanics, representing 

universal fluctuations of physical process rates R and cross sections a given by the fractional 

(or relative) spectral density S(f) = 2aA/fN.   Therefore it is present in the process rates 

generating the dark current observed in junction photodetectors, such as diffusion (scattering 

cross sections fluctuate) in diffusion-limited junctions, and recombination in the 

recombination-limited regime.   One is therefore tempted to expect similar fluctuations in the 

photogeneration of electron-hole pairs.   However, as we show below, the corresponding quantum 

1/f coefficient is zero, precluding the existence of quantum 1/f fluctuations in the photo- 

generation rate.   Here N is the number of carriers used to define or measure the process rate or 

cross section considered. 

For an arbitrary process involving a total of n incoming and outgoing charged particles, 

the nonrelativistic quantum 1/f coefficient is given [24] by 

n 
2aA = (4a/37cc2) "£x\ iT1 jq ,q j( v,-v j)2 , (78) 

where the summation runs over the charges q\ and velocities VJ of all incoming (TK=-1 ) and 

outgoing (T|J=1) particles (altogether n of them) in the process whose quantum 1/f noise we 

want to find, and a is Sommerfeld's fine-structure constant, e2/Kc=1/137.    In a photoelectric 

process a photon (q=0) is absorbed, and a pair of oppositely charged particles is generated 

(T|=1) with velocities v-i and V2 which are either zero, or quickly decay to zero in a time 

negligible with respect to the reciprocal frequency at which we calculate the quantum 1/f noise. 
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Thus in our case there are no incoming charged particles, and n=0+2=2.  The aA coefficient of a 

photogeneration process is therefore zero, 

aAph    =   (1,1)+(2,2)+(1,2)+(2,1)   =   0+0+   (4a/37ic2)(v1-v2)2 =   0. (79) 

All photogenerated carriers of the right sign are collected in the well of the charge-coupled 

device, although they may generate quantum 1/f voltage fluctuations on their way.  Since 

usually only the number of carriers collected at read-out matters, no quantum 1/f noise will be 

observed in a photoelectric CCD as long as the dark current is negligible with respect to the 

photocurrent.   This is in agreement with the experiments performed by Mooney [25] of RADC- 

Hanscom AFB.   The same considerations apply to Metal-Insulator-Semiconductor (MIS) 

photodetectors [26]. 

V. QUANTUM 1/F NOISE IS QUANTUM CHAOS: FRACTAL DIMENSION 

OF QUANTUM 1/F NOISE 

Quantum 1/f noise in a physical quantity such as a current j, a cross section, a process 

rate, or a kinetic coefficient, such as the mobility, is represented by an expression of the form 

5j/<j> = aX|b(k,^)|2cos(ckt+YkJ (80) 
k;X 

where the sum is over all electromagnetic modes labeled by their wave vector k and polarization 

X, with k=|k|.   Eq. (80) is deterministic and the particle-specific random initial phases ykx are 

present in each term as initial conditions, like the initial phases describing a turbulent fluid 

are present in each Fourier component of the perfectly deterministic velocity field.   The 

difference between the mentioned classical chaos (turbulence ) case and the quantum 1/f chaos 

we are introducing here becomes evident when we recall that J is in fact a probability current 

density!   Can we calculate a spectral density of the fluctuations 8j of this probability current 

and claim that it represents the expectation value of the spectral density of the observed 

quantum 1/f fluctuations?   Our rigorous derivation in second quantization [23, 28-29] tells us 

we can, provided we divide the single-particle result by N in the case of bosons and N-1 for 

fermions.  Here N is the number of scattered particles used to define what we call scattered 

current j or scattering cross section 0.   Encouraged by this result, we have undertaken an effort 

to determine the fractal dimension of quantum 1/f noise given by Eq. (80) and restricted to an 

observed frequency interval from ck0= e0=27rf0 to A=2nF, where e0=27:/T is determined by the 

duration T of the 1/f nose measurement.   Our objective is to determine the fractal dimension of 
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quantum 1/f noise and to compare it with measurements of the fractal dimension of physical 1/f 

noise in HgCdTe MWIR photodiodes [30], Calculating the spectral density, replacing the 

summation In Eq. (80) by an Integral, and going back to the original fluctuations, we obtain an 

equivalent representation of the fluctuations [23,28-29] 

A 

SJ/<J>=>  2(ctA)1/2 Jcos(et+Ye)de/Ve (81) 
Co 

where a=1/137 is Sommerfeld's fine structure constant and aA ■ (2CC/3TT)(AV/C)2 is the 

bremsstrahlung coefficient, or Infrared exponent, of the process which generates the current j, 

Av being the velocity change of the charged particles In the process. Repeating the fluctuations 

periodically outside the observational Interval T, we can represent Eq, (81) through an 

equivalent Fourier series 

M 
6]/<j>«» 2aA^cos(ne0t+Yn)/(nE0)1/2« x(t) (8 2) 

n»1 

which Is similar to Eq. (80), with the terms of the same frequency grouped together, and the 

terms lumped together In harmonics with random phases yn, with M=A/e0. To this expression 

we have applied the Takens-Grassberger-Procaccia analysis [31], by creating a time series 

x;=x(t|) with 1<I<N.  We consider this series as a one-dimensional sample of the quantum 1/f 

process.  We calculate the correlation function Ci(M)(r) which Is N"2 times the number of data 

pairs (xi.xj) separated by a distance less than r. Next we form groups of d consecutive data 

(xi,x|+i,...xj+d-i).  Considering them as vectors In a d-dimensional Euclidean space, we again 

calculate 

N 
Cd(M)(r) - N-2 5>[r-||X|-Xj||], (83) 

l;J"1 

where e(x) is the step function (zero for negative, 1 for positive, and 1/2 for null   arguments) 

Finally we plot the curves logioCd<M)(r) as a function of r, with d=0,1, 2,.„ as a parameter. 

We notice (Fig. 1 for M-1 and Fig. 2 for M=2 and 3 where for M=2 the numbers d=1,2.3.4, 

have been replaced by a.b.cd.) that the slope of the curves Is Just d, and Increases as d Is 

increased from curve to curve up to M, the number of terms In Eq. (82). We graphed the case 

M=1 (a single term in Eq. (82) In Flg. 1 and M=2 and 3 In 
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Fig. 2.  After d=M, the slope does no longer increase.  This maximal slope gives the fractal 

dimension of the quantum 1/f process with M terms.   Our conclusion at this point is that 

quantum 1/f noise in a frequency interval corresponding to M terms in Eq. (83) is chaotic with 

a fractal dimension M.  Had it been stochastic rather than chaotic, the slope of the curves would 

have kept increasing indefinitely. 

Experimentally, Fote, Kohn, Fletcher and McDonough found a fractal dimension of dM=10 

for 1/f noise measured in HgCdTe MW infrared detectors in the interval from fo=10_2Hz to 

F=10 Hz.   Noticing that F/fo=103=210, we expect M=10, which yields also dM=10.   This nice 

agreement between theory and experiment indicates that the measured 1/f noise is a form of 

(deterministic) chaos, whereas the other models which competed with the quantum 1/f theory 

incorrectly described it as a stochastic phenomenon.   Furthermore, this agreement represents 

an independent verification of the quantum 1/f theory, independent from tests based on the 

predicted magnitude and spectral dependence of 1/f noise. 

VI. QUANTUM 1/f FUCKER OF FREQUENCY IN QUARTZ RESONATORSTHEORY AND EXPERIMENT 

VI.1.     Introduction 

Flicker of frequency noise is an important characteristic of quartz resonators which 

limits their stability and determines their utility for most applications. The 1/f contribution 

to frequency stability is best obtained by observing the stability over a range of measurement 

times in the time domain, or over a range of frequencies in the frequency domain. From the 

extended data one can fit a flicker of frequency model to the data that excludes the contributions 

from random walk frequency modulation and from the drift present in many resonators and 

oscillators  (Fig. 3). 

One of the first who systematically studied the 1/f noise as a function of geometry, 

temperature and Q-factors was Gagnepain [32]. He noticed empirically that the 1/f part of the 

spectral density of fractional frequency fluctuations, Sy(f), varied as Q"4 for resonators 

between 1 and 25 MHz. As the temperature changes, the Q-factor of a resonator changes. This 

allows us to exclude the effect of many other factors. Additional work by Parker, however, 

showed that the data from both bulk acoustic wave (BAW) and surface acoustic wave (SAW) 
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devices could be roughly fit to the the same model [33], if one assumes a Q"4 dependence for the 

phase noise S<j, insted of Sy. The fit is shown on Fig. 4. 

From a theoretical point of view, fundamental work by this author [34], inspired by the 

quantum 1/f theory [2], has derived the Q"4 depenence of Sy for all resonators from first 

principles already 1979. Work on many systems other than quartz has yielded very good 

quantitative agreement between theory and experimental data for quantum 1/f noise [35]. This 

paper refines the previous theoretical work on 1/f frequency noise in quartz to suggest a better 

framework for predicting the level of 1/f frequency noise in quartz resonators over a wide 

range of frequencies and Q-factors. 

VI.   2.   Theory   of   1/f   Frequency   Noise   in   Quartz   Resonators 

According to the general quantum 1/f formula [2], r-2Sr(f)=2aA/f with a=e2/hc 

=1/137 and A=2(AJ/ec)2/37t is the quantum 1/f effect in any physical process rate r. Setting 

J=dP/dt=P where P is the vector of the dipole moment of the quartz crystal, we obtain for the 

fluctuations in the rate r of phonon removal from the main resonator oscillation mode (by 

scattering on a phonon from any other mode of average frequency <co>) of the crystal, (or via a 

two-phonon-process at a crystall defect or impurity, involving a phonon of average frequency 

<co'>) the spectral density 

Sr(0 = r24a(AP)2/3rce2C2, (84) 

where (AP)2 is the square of the dipole moment rate change associated with the process causing 

the removal of a phonon from the main oscillator mode. To calculate it, we write the energy W 

of the interacting resonator mode <u» in the form 

W = nh<co>   =   2(Nm/2)(dx/dt)2=(Nm/e2)(e  dx/dt)2 = (m/Ne2)e2(P)2; (85) 

The factor two includes the potential energy contribution. Here m is the reduced mass of 

the elementary oscillating dipoles, e their charge, e a polarization costant, and N their number 

in the quartz crystal.    Applying a variation An=1 we get 
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An/n = 2|AP|/|P|,  or  AP=P/2n. (86) 

Solving Eq. (85) for P and substituting, we obtain 

|AP| = (Nh<co>/n)1/2(e/2e) (87) 

Substituting AP into Eq. (84), we get 

r-2Sr(f) = Nah<cü>/3n7imc2fe2 =A/f. (88) 

This result is applicable to the fluctuations in the loss rate r of the quartz. 

The corresponding resonance frequency fluctuations of the quartz resonator are given by2 

cü-2Sffl(f)  =  (1/4Q)(A/f) = Nah<u>/12n7tmc2fe2Q4, (89) 

where Q is the quality factor of the single-mode quartz resonator considered, and <co> is not the 

circular frequency of the main resonator mode, co0, but rather the practically constant 

frequency of the average interacting phonon, considering both three-phonon and two-phonon 

processes. The corresponding AP in the main resonator mode has to be also included in 

principle, but is negligible because of the very large number of phonons present in the main 

resonator mode. 

Eq. (89) can be written in the form 

S(f) = ßV/fQ4, (90) 

where, with an intermediary value <CD>=108/S, with n=kT/h<co>, T=300K and kT=4 1014, 

ß =(N/V)aK<ü)>/12n7te2mc2  =1022(1/137)(1 0"271 08)2/1 2kT:t1 0"27 9   1020 =1.    (91) 

The form of Eq. (30) shows that the level of 1/f frequency noise depends not only as Q~4 

as previously proposed, but also on the oscillation frequency or the volume of the active region. 

This model qualitatively fits the data of Gagnepain [32,42  ] where he varied the Q-factor with 
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temperature in the same resonator (but not frequency or volume). 

The model also provides the basis for predicting how to improve the 1/f level of 

resonators, beyond just improving the Q-factor, which has been known for many years. Since 

the level depends on active volume, one should use the lowest overtone and smallest diameter 

consistent with other circuit parameters. The following experimental discussion has been 

generated by F. Walls (NIST Boulder). 

VI.   3.   Experimental   Measurements   and   Analysis   of 

1/f   Noise   in   Quartz   Resonators 

The level of 1/f frequency noise in quartz resonators has been measured using phase 

bridges and complete oscillators [32,33,36-41]. Unfortunately much of the data in the 

literature is unusable for modeling because the unloaded Q-factor is unknown. (Our case is 

even more restrictive because we also need to know the electrode size). The phase bridge 

approach has the advantage that the unloaded Q-factor can be easily measured and the noise in 

the measurement electronics can be evaluated independent of the resonator. If resonator pairs 

are used, the noise of the driving   source can generally be neglected and the pair can operate at 
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virtually any frequency [39]. The oscillator approach makes it possible to compare many 

different resonators one at a time. The noise of individual oscillators can be derived by 

measuring the phase noise between 3 oscillators [42]. 

Figure 5 taken from [33] is one of several studies showing that the 1/f level is 

virtually independent of the loaded Q-factor. This is in complete agreement with the theoretical 

model. In practical oscillators there is a dependence on loaded Q-factor only when the phase 

noise of the sustaining electronics contributes to the overall noise level. 

We have analyzed 1/f frequency noise as a function of unloaded Q, volume under the 

electrodes, and frequency. For a given resonator geometry and manufacturer, we have taken the 

best values of Sy(f) reported in an attempt to remove the effects of poor crystals or 

electronics. In Fig. 6 we have taken all of the precision data available with unloaded Q-factor, 

electrode volume, and frequency stability and plotted them according to the three models. Except 

for the 2.5 MHz resonator where Qv0 = 0.95x1013, the Qv0 product for all resonators is near 

1.2x1013 (this is close to the material limit for AT and SC cut resonators).   The curve labeled 

Ky  shows the fit of the data to the model [32] 

Sy (f) =Ky /f(3 x 10"5 /Q4 ).   Ky   varies about a factor of 500 for Q-factors between 105   and 

3.8x106   (resonator frequencies between 2.5 and 100   MHz). 

The curve labeled K^ shows the fit of the same resonator data to the model [33] 

S (f) = K0/f3 (3 x 1010 /Q4 ). K0 varies about a factor of 10 for the same range in Q-factor. 

Curves ße and ßb show the fit of the same resonator data to the model Sy(f) = ß/f (Vol/Q4 ), 

where ße is for SC and AT resonators with electrodes plated on the resonator and ßb is for BVA- 

style AT and SC resonators [37]. The volume between the electrodes (in cm3) is used to 

approximate the volume of quartz contributing to the output power. The ß factors are 

remarkably constant for Q-factors from 10s  to 3.8 x 106. 

Figure 7 shows the dependence of ße on Q-factor for a number of electroded resonators of 

the same type from a single manufacturer for 3 resonator types as measured by Norton 

[38,45]. The wide variation in ße for the same style resonator and Q-factor indicates that 

acoustic loss is not the only mechanism contributing to the noise level. The data for this graph 

was taken from measurements of (100 s) and may have been biased high by random walk FM 

noise in some resonators. 

VI. 4. Discussion 

The analysis of the most stable quartz resonators indicates that the 1/f frequency noise 

level depends on volume between the electrodes and unloaded Q-factor in relatively good 

agreement with eq.  (30) considering the fact that the estimation of <co> and N is only 
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approximative. The nonadjustable parameters ße and ßb are virtually constant versus unloaded 

Q-factor, which is in stark contrast to fitting parameters K$ and Ky. It is not surprising to us 

that ße and ßb are different for the two types of resonators, since energy trapping and electrode 

stress are considerably different. Fig. 7 shows that there are other noise processes besides 

acoustic losses that affect the 1/f noise level in some resonators. 
Although we have analyzed only the data for a few resonators, the consistency of ße and ßb 

over a factor of 40 in Q-factor and resonator frequency and the general agreement for the 

magnitude of ß between theory and experiment give us some confidence that this new model can 

be used to predict the best performance of different resonator geometries. 

This new volume model predicts that a resonator having smaller electrodes would have a 

lower level of 1/f frequency noise than another one with the same frequency and Q-factor but 

larger diameter electrodes. The decrease in electrode area would increase the impedance levels 

and degrade the wide-band noise somewhat. For most resonators the wideband noise is dominated 

by the electronics and not the resonator. The increase in series resistance, obtained by 

decreasing the electrode area by a factor of 4, would probably be tolerable from the standpoint 

of wideband noise but might require a change in loop gain. 
BT resonators are potentially interesting in that they offer a Qv0 product approximately 

three times higher than that of AT and SC resonators. BT cuts are roughly as sensitive to 

temperature transients as AT cuts. Therefore to achieve parts in 10"14 frequency stability with 

BT cuts would require temperature stabilities of order 10"9 K/s or 100 times better than is 

required for SC cut resonators [45]. 

Based on these early observations it appears that the level of 1/f frequency noise in 

quartz may yet be improved to the low 10-14 level by applying one or more of the following 

techniques: reducing the electrode area, using BVA type resonators, going to lower frequencies, 

using BT cut resonators. It must be remembered that acceleration induced effects become more 

dominant as the stability improves. 

VII. EXPERIMENTAL CHECKS ON COLLECTOR QUANTUM 1/f NOISE IN BJT'S 

VII.1     Introduction 

1/f noise in bipolar junction transistors (BJTs) was treated by van der Ziel [46]-[48] 

who applied a Hooge-type approach similar to Kleinpenning's treatment [49] of pn junctions, 

and used experimental data to determine the Hooge constant which was in turn compared with the 

quantum 1/f theory.   However, since the BJT is a minority carrier device, it requires the 
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application of the quantum 1/f   equation [1,2] from the beginning, for the correct 

interpretation of the number of carriers in the denominator of the Langevin noise source. 

In the most elementary model [50] of a BJT, the collector current lc arises from 

minority carriers injected from the emitter into the base, which diffuse across the width XB of 

the base and are then all swept across the reverse-biased collector junction by the built-in 

field of the junction.   If we neglect the usually small leakage current of the collector junction 

and the small fraction of the carriers recombining in the base, we get for a n+pn BJT: 

lc= AqDn[n0B(exp(qVBE/kT))/XB], (92) 

where A is the cross sectional area of the base, q=-e is the charge of the minority carriers in 

the base, Dn their diffusion coefficient in the base, nB(0)=nOBexp(qVBE/l<T) is the electron 

concentration at the limit of the emitter space charge region, VBE is the applied base - emitter 

voltage, and XB is the width of the base.  The expression in rectangular brackets is the electron 

concentration gradient calculated with the boundary condition of a vanishing electron 

concentration at the limit of the collector space charge region.  We assume the base to be much 

narrower than the electron 

diffusion length Ln=(Dni:), Xß<<Ln, but sufficiently wide to avoid ballistic electron transport 

across the base.   Usually XQ is a fraction of a micron. 

Quantum 1/f fluctuations of the collisional cross sections of the electrons in the base 

will yield fluctuations of the diffusion constant, and of the mobility (5Dn/Dn=5^i/p.): 

5IC = Aq(5Dn)[n0Bexp(qVBE/kT)/XB]. (93) 

The corresponding spectral density of fractional fluctuations l"2S|c is 

lc-2<(5lc)2>f = Dn-2<(5Dn)2> = u"2<(5n)2> = an/fN. (94) 

In the last step our quantum 1/f equation [1,2] was used, where N is the number of carriers 

which define the scattered (or diffused) current, leaving the base and emerging in the collector, 

while an = aAn is the effective quantum 1/f noise coefficient, or Hooge constant.  The number of 

electrons N is thus determined by the effective lifetime xc of the electrons, which will be 

slightly lower than the lifetime in the unbounded collector material, due to the collector lead 

contact processes, and due to lateral surface recombination.  Indeed, we can write N = xclc/q- 

Thus we finally obtain the spectral density of the collector current fluctuations: 
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S|c = anlcq/(fxc). (95) 

in which xc is the effective lifetime of the majority carriers in the collector.   This expression 

is simpler, but similar to the expression derived earlier, with the important difference that 

now we have a lifetime of the carriers in the denominator, while before it was the usually much 

smaller diffusion time id=XB2/Dn of the electrons in the base.   Eq. (95) also implies that in 

narrow-base BJTs of various base-widths an will be constant, as in other devices, rather than 

an/td-   In the following section we show that this expression is in good agreement with the 

experimental data in BJTs with 1/f collector noise spectra. 

VII.2   Comparison   of   the   Calculated   Results   with   Experimental   Data 

1. The effective quantum 1/f noise coefficient, 

or Hooge constant, an 

We consider the following scattering processes [51] in the calculation of the quantum 

1/f noise coefficient a\-\: 

a) Normal collision processes (Impurity scattering, Optical scattering and Acoustical 

phonon scattering) [10]. 

b) Intervalley scattering; there are two types intervalley processes, i.e., g-processes 

which include Umklapp, and f-processes [10']. 

From these points of view, we obtain the current spectral density in the form of Eq. 

(95): 

S|c(0 = an[lcq/(fxc)] - aAn[lcq/(fxc)] 

For the case a), the normal collision processes: 

an =aAn =a4Av2/(3-c2) =4a(kT/m0?tc2)   =4.69x10"10, (96) 

where we used a = u.0ce2/2h * 1/137 (the fine structure constant), c = 3x108m/sec, k = 

1.38x10"23J/K, T = 300K, and m0 = 9.1x1 0'31kg. 

For the case b), the intervalley scattering + umklapp scattering 1/f noise (g- 

processes): 

an = aAn = a4Av2/(37cC2) = a4(KAk/m)2/3^c2   =5.86x1 0"7, (97) 
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where AV = Ap/m = fiAk/m, |Ak| = 0.8(2;u/a), and a = 5.4Ä for Silicon [51].   The g-proceses 

include Umklapp back to the original Brillouin zone,  and the conduction effective mass m = 

0.26mo must be used [10']. 

Comparing the an = 5.86 x 10"7 with reference [10] Fig. 8 where the result was from 

the exact calculation,  we find out that they are pretty close.  We would like to point out that an 

= aintervalley which is only an approximation due to the high a|ntervalley comparing with 

^impurity and cxacoustic. 

2. The experimental data compared to the Hooae parameters a^ 

i. In n+-p-n   bipolar  transistors: 

Sj1(f)/n
2 = aH/fN. (98) 

This can be written in terms of the diffusion constant , D = kTu7q 

SD(f)/D2= aH/fN (99) 

which yields  [52] 

^^inh^l. (100) Sic(0 = -T^^ infcrr^ lcv '        f     wB
2       lN{w BJ 

where aH is the Hooge parameter for electrons, f is the frequency, Dn is the diffusion constant 

for electrons, wB is the width of the transistor base region, N(0) is the electron concentration 

for unit length at the emitter side of the base, and N(wB) is the electron concentration for unit 

length at the collector side of the base. 

If we introduce the ratio [53] 

N(0)      Vp+Dn/WB 

N(wB) " Dn/wB 
{ ] 

where vn is the saturation velocity of the electrons in the base region, and the diffusion time 

xdn= wB2/2Dn= 1/2jifT (102) 

where fT is the upper cut off frequency of the BJT, then 
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o   ,«     gHn q'c   ,   Vn + (Dn/wB)1     aHn    . Vn+Dn/wB Mncn 
S'^=T^'n'      Dn/wB      ]=    f    dlo«fTln[    Dn/WB   ] (103) 

ii. In p+-n-p  bipolar  transistors: 

ö|c(t) -    f    wB
2lnlP(wB)J U     ' 

where 

^.U^.rtV«^ <105) 

and where vcp (=107 cm/s in Si) is the saturation velocity of holes in the base.   For details 

see[53], and the following comparisons in table I, where a refers to the normal scattering 

quantum 1/f calculation and b to the more likely case of g-type intervalley-umklapp scattering. 

It is more likely to have this case since it has a much larger quantum 1/f effect, and will mask 

the smaller contribution calculated for case a.   Also, the experimentally noticed strong increase 

in 1/f noise if the transistors are cut from single-crystals so that the current flows along an 

[100] - like direction confirms this and can not be explained without the quantum 1/f theory. 

The experimental values in Table I are much closer to the values calculated for the case b 

replacing ind with the lifetime in the collector, TC.   This corresponds to the inclusion of a 

corrective factor incite in the derivation of the collector quantum 1/f noise spectral density. 

However, a proportionality of S|C to fj is noticed in many transistors, contrary to our 

suggestion of replacing xnd with tc.   The present formula containing xc is applicable to 

ultrasmall BJTs with a very narrow base region for which most of the life time of carriers 

diffusing from the emitter is spent in the collector.   This subject requires further theoretical 

and experimental study to determine the exact limits of applicability of the new formula. 
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VIII. QUANTUM 1/f MOBILITY FLUCTUATIONS IN SEMICONDUCTORS, 

CALCULATED WITH THE QUANTUM 1/f CROSS-CORRELATION FORMULA 

VIII.    1.    Introduction 

Together with the graduate student Thomas H. Chung, the author has performed an 

analytical calculation of mobility fluctuations in silicon and gallium arsenide, using the new 

quantum 1/f cross-correlations formula derived by the author in the previous AFOSR Grant 

period, (1987) and included in the July 1989 Final Technical Report.   This same new form of 

the   quantum 1/f cross correlations was rederived with a different method by Van Vliet in 

1989.   It differs from the old form used in the 1985 calculation of Kousik et. al. by a correction 

which is zero when the momentum changes of the two current carriers involved in the cross 

correlation   are identical, but increases to finite values when the momentum differences caused 

by the scattering process are different.   The correction is proportional to the squared difference 

of the two momentum changes. We have repeated all calculations in the original paper by Kousik 

et.al. [10, 10'], obtaining both for impurity scattering and for the various types of phonon 

scattering new analytical expressions which show a considerable increase of the final quantum 

1/f noise.  The results obtained are applicable both to direct and indirect bandgap 

semiconductors.This calculation is of major importance for the 1/f noise-related optimization 

both of the two types of materials, and of the many devices constructed with them for military 

and civilian applications in the electronic and opto-electronic industry. 

The new cross-correlation formula gives the cross-spectral density which describes the 

way in which symultaneous quantum 1/f scattering rate fluctuations AW obseved in the 

direction of the outgoing scattered wave-vector K' are correlated with those in the K" direction, 

when the two corresponding incoming current carriers have the wave vectors K-| and K2: 

SAW(Ki.K,;K2.K";f) 

= (2a/3^f)(h/m'c)2WK,.K-WK2.K"[(K'-Ki)2 + (K"-K2)2]5Ki,K2- (106) 

The form conjectured by us earlier had 2(K'-Ki)(K"-K2) in place of the rectangular bracket. 

The difference between the rectangular bracket and 2(K'-Ki)(K"-K2) is the perfect square 

[(K'-Ki)-(K"-K2)]2.   Therefore we expect the new results to be always larger than the 

results obtained on the basis of the previously conjectured form. 

VIII.    2.    Impurity    Scattering 

For impurity scattering of electrons in solids, fluctuations Ax of the collision times x 

will cause mobility fluctuations 
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Auband(t) = [e/m*«v2»]LKVK2AT(t)nK, (107) 

where «v2» is both the average over all states of wave-vectors K, with occupation numbers 

ni<, in the conduction band, and the thermal equilibrium average of the quadratic carrier 

velocities.   With the help of the relation 

1/x(K) = (V/8rc3)J(1   - cose7cose)WK,K'd3K\ (108) 

the mobility fluctuations are reduced to fluctuations of the elementary scattering rates WK,K'. 

governed by Eq. (106).   Here V is the volume of the normalization box which disappears in the 

final result, 6 and 6' respectively the angles K and K' form with the direction of the applied 

field.   One finally obtains after tedious multiple integrations 

^-2SA^(f)  =  [256::aK2£4Hl2/3m-824e8Ni2](1/f)ZKKl0[|n(1+a2)-a2/(1+a2)]-3 

[(2a2 + a4)/(1+a2)-2ln(1+a2)]F(EK)[2:KVK2T(K)F(EK)]-2, (1 °9) 

where  a=2K/>c,  K2=e2n(T)/ekBT, n(T) is the electron concentration, F(EK)=exp(Ep-EK) for 

non-degenerate semiconductors, Nj the concentration of impurities of charge Ze and e the 

dielectric constant.   The corresponding partial Hooge parameter for impurity scattering is thus 
oo 

ai = [4^taKK5Nc/3m"7/2(kBT)3/2c2] Jdxx11/2e-x 

0 

[In(bx + 1)-bx/(bx + 1)]-3((2bx + b2x2)/(bx+1)-2ln(bx + 1)] 
oo 

{ jdxx3e-x[ln(bx + l)-bx/(bx + l)]-1}-2. (110) 
0 

This result is graphed below for three different values of the donor concentration N<j (=1021, 

1023, and 1024) and is compared with old results (marked with an initial letter o)obtained by 

simply recalculating the old analytical expression [10]. 
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As expected, the new cross correlation formula leads to higher cq values than the previously 

conjectured expression.   This was mentioned in connection with Eq. (106) above. 

VIII.    3.    Acoustic    Electron-Phonon    Scattering 

In this case the calculation is similar, and leads to the result 
oo 

aac = [327iaNcm*C7ri3/3c2kBT)4]{(1/R2) jdxx"4 

1 

[(x-1)7/7 + (R+1)(x-1)6/6 + R(x-1)5/5] 

[(x-1)5/5 + (R + 1)(x-1)4/4 + R(x-1 )3/3]exp(-x2/4R) 
1 

+  jdxx-4[(x + 1)5/5-(x + 1)6/6 + (x-1)5/5 + (x-1)6/6] 
0 

[(x + 1)3/3 + (x-1)4/4 + (x-1)3/3-(x + 1)4/4]exp(-x2/4R) 
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+ Jdxx-4[(x + 1)5/5-(x + 1)6/6][(x + 1)3/3-(x + 1)4/4]exp(-x2/4R)}, (111) 
1 

where R=kBT/2m*Ci2, Ci is the deformation potential, and Nc is the effective density of states 

for the conduction band. 

VIII.   4.   Non-Polar   Optical   Phonon   Scattering 

This time one obtains 

an o ph = [8W2hco0aNch2/3m*5/2c2cü0]{ Jdxx5/2 

'   H 0 

[(F + 1)(x-1)1/2e(x-1) + F(x+1)1/2]-4 

[(F+1)2(x-1)(2x-1)9(x-1) + F2(x + 1)(2x + 1)]exp(-hcj0x/kBT)} 

CO 

{ jdxx3/2[(F+1)(x.1)i/20(x.1) + F(X + 1)i/2]-iexp(-hcüox/kBT)}-2, (112) 
0 

where  F=[exp(hu0/kBT)-1]-1, and co0 is the optical phonon frequency. 

VIII.   5.   Polar   Optical   Phonon   Scattering 

Proceeding as in Sees. VIII.2 and .4, we obtain 

apoph = [8W2hco|aNch2/3m'5/2c2w|]{ jdxx4 

0 

[F2(x + 1)1/2ln(2x1/2 + 2(x + 1)1/2) 

+ (F + 1)2(x-1)1/2ln(2x1/2 + (x-1)1/2)e(x-1)]exp(-hm|x/kBT) 

[(F + 1)arcsinh(x-1)1/29(x-1) + Farcsinh(x1/2)]-4}. (113) 

Here coi is the longitudinal phonon frequency. 

VIII.    6.    Intervalley    Scattering 

This type of scattering, present in indirect bandgap semiconductors, transfers electrons 

from one of the six minima (or valleys) of the conduction band energy in k-space to one of the 

other five minima.  Transitions between a valley and the nearest valley, which is along the same 

k-space direction in the next copy of the first Brilloin zone in the periodic zone scheme, are of 

the Umklapp type, and are called g-processes.  Transitions to the four valleys present in the 

same zone along the other two k-space directions are called f-processes.  Repeating a previous 

47 



calculation [10'] on the basis of the new cross-correlation formula (106), we obtain for g- 

processes 

ag = [8W2hcoijaNch2/3m*5/2c2cüij]{ Jdxx5/2 

[(F + 1)(x-1)1/29(x-1) + F(x + 1)1/2]-4 

[(F + 1)2(x-1)(2x-1)9{x-1) + F2(x + 1)(2x + 1)]exp(-ficoijx/kBT)} 

{ Jdxx3/2[(F+1)(x-1)1/2e(x-1) + F(x + 1)1/2]-1exp(-h(üijx/kBT)}-2, (114) 
0 

where licojj is the phonon energy corresponding to the momentum difference required by the 

intervalley transition.    For the corresponding f-process we obtain [10'] 

of = (k0/qo)2ag, (115) 

where k0/q0 is the ratio between the position vector of a conduction band energy minimum in k 

space, and twice the distance of the minimum from the Brillouin zone boundary, 0.85/0.3 for 

silicon.  There are three g-type alphas agi, ag2 and ctg3 (from LA, TA and LO phonons 

repectively) and three f-type contributions an, af2 and ceo (from TA, LA and TO phonons). 

Their values are given in the graph below and are a few times larger than the old values. 

The various quantum 1/f contributions derived here can be approximately superposed to 

yield the resultant quantum 1/f coefficient according to the rule 

OH = £j(n/m)2 a\ (116) 
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IX. COHERENT QUANTUM 1/f CHAOS 

Conventional quantum 1/f fluctuations of physical cross sections and process rates have 

been introduced by us as a fundamental infrared divergence phenomenon in 1975 [1].  Some of 

the subsequent publications [2]-[13] have shown this new effect to be unaffected by the 

presence of the thermal radiation background [4], [5], some have derived it with wave packets 

[11], including a finite mean free path [9], in second quantization [13], with the Keldysh- 

Schwinger method [12], or in the Van Hove weak interaction limit [14], some derived its 

characteristic functional [7], or applied it to the calculation [10] of mobility and 

recombination speed fluctuations in semiconductors and semiconductor devices.   Others verified 

the new effect experimentally and successfully applied it to electronic devices. 

The present paper derives a related fundamental effect which we call the coherent 1/f 

effect, with elementary methods of quantum electrodynamics and non-relativistic many-body 

theory.   Our derivation uses the new picture introduced by Dollard [55] and generalized by 

Kulish and Fadde'ev [56] and later by Zwanziger [57], in agreement with earlier work by 
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Chung [58] and by Kibble [59].   in this new picture, the asymptotic Coulomb interaction is 

included in the unperturbed Hamiltonian rather than in the perturbation part.   This leads to a 

more complex physical free particle notion which includes a coherent photon cloud, and replaces 

the pole in the propagator with a branch point.   It also leads to a smeared-out mass shell.   Using 

this picture, we can neglect the remaining part of the interaction if we limit ourselves to the 

asymptotic region of large distances and times, which are important in the case of 1/f noise. 

For N electrons in a Fermi sphere shifted in momentum space by a vector p0 and 

occupying N/2 orbitals e'Pr, the propagator derived by these authors [57] can be reduced for 

large time components of x'-x to the non-relativistic form 

-i<*o|Tvs,(x,)v3-(x)|*o> s 5SS' Gs(x'-x) 

=   (i/V)I{expi[p(r-r')-p2(t-t')/2m]/K}np|S 

P 
x{-ip(r-r')/h-+i(m2c2 + p2)1/2(t-t')(c/h')}a/71. (117) 

Here a=e2/Kc=1/137 is Sommerfeld's fine structure constant, nps the number of electrons in 

the state of momentum p and spin s, m the rest mass of the fermions, 5Ss' the Kronecker 

symbol, c the speed of light, x=(r,t) any space-time point and V the volume of a normalization 

box.   T is the time-ordering operator which orders the operators in the order of decreasing 

times from left to right and multiplies the result by (-1)p, where P is the parity of the 

permutation required to achieve this order.   For equal times, T normal-orders the operators, 

i.e., for t=f the left-hand side of Eq. (117) is i«l>olv£(x)Vs,(x')l<*)o>-   The state O0 of the N 

electrons is described by a Slater determinant of single-particle orbitals. 

Consider first the case t=t' for simplicity, although only the case of large t-t' can be 

expected to be experimentally applicable.  The pair correlation function can then be decomposed 

as follows 

<O0|H/£{x)v£-(x')vS'(x')Vs(x)|O0> . <00IV^(X)VS(X)|00>«D0|H/J'(X')VS'(X')|(DO> 

- <*olV$(x)Ys,(x')|*o><*olv£,(x,)Vs(x)|*o>. (118) 

The first term can be expressed in terms of the particle density of spin s, n/2 = N/2V = 

<C>0|y£(x)ys(x)|<D0>, while the second term can be expressed in terms of the Green function 

(117)  in the form 

Ass-(x-x') H<^olv^(x)vJ-(x,)Vs-(x,)vs(x)|<D0>   =(n/2)2 +5SS' Gs(x'-x)Gs(x-x'). (119) 
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The "relative" autocorrelation function A(x-x') describing the normalized pair correlation 

independent of spin is obtained by dividing by n2 and summing over s and s' 

A(x-x')  =  1   +  (1/n2)£Gs(x-x')Gs(x'-x) 
s 

= 1  - (1/N2)S    I{exp[i(p-p,)(r-r,)/K]}np>snp'is 
s   pp' 

x|p(r-r,)/K|a/7l|p,(r-r')/K|a/7C. (120) 

Here we have used Eq. (117).   The low-wavenumber part A| of this relative density 

autocorrelation function is given by the terms with p=p'. 

Ai(x-x')  =  1   -  (1/N2)X Inp,s|p(r-r')/fi|2a/7C (121) 
s    p 

= 1 - (2/N2)[V/(2^h')3]     ld3p|(p + p0)(r-r')/R|2a/7t 

P<PF 

a       a       a 

=   1   - (2/N2)[V/(2;iri)3]  JdPl  jdp2 Jdp3|(p3 +Po3)(r-r')/h'|2c'/It 

-a      -a      -a 

=  1  - (2/N2)[V/(27ih-)3)8a3|a(r-r,)/h-|2a/7t 

and 

= 1  - (1/N)[(z/6)l/3pF|r-r'|/K]2a/7t. for pF»p03; (122) 

=  1   -  (1/N)ip0(r-r')/H|2a/Jt forpF«p03; (123) 

In view of the smallness of 2a.'::, for pF>>p03 we have integrated in cartesian coordinates, 

approximating the Fermi sphere by a cube of side 2a with a= (7i/6)1/3pF.  The result is 

practically independent of p0 and of p03=Po(r-r')/lr-r'l-   Tne factor (rc/6)2a/3n can be 

neglected.  For pF«p03 we used the mean value theorem for estimating the integral over d3p in 

spherical coordinates.   In all cases the autocorrelation decreases very slowly from 1 when |r- 

r'| is increased to very large values.   Writing the rectangular bracket in Eq. (122-123) as an 

exponential function of its logarithm, expanding the resulting exponential, and keeping only the 

first term, we obtain with pF/HskF 

Ai(x-x')   =   (1-2/N)   +   (6/7i)2a/3*{[1/kF|r-r'|]2a/*}/N 
oo 

= (1-2/N) + (6/7t)2a/37t[1/kF]2a/7t(2a/N7:){cos[k|r-r'|]dk/kl-2a/7C. 
o 
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={N-2  +(2a/n)J[k/kF]2a/7tcos[k|r-r'|]dk/k}/N      for pF>>p03; (124) 

DO 

={N-2 +(2a/7r)J[k/k0]2a/7tcos[kp0(r-r')/Po] dk/k}/N    for pF<<p03; (125) 
o 

Here we have used a well-known Fourier integral [60] and we have introduced k0=p03/K. 

According to the Wiener-Khintchine theorem, the coefficient of the cos gives the spectral 

density.   To get it for the fractional fluctuations 5n/n, we divide by the constant term N-2 

S5n/n(k)  =  [2a/jtk(N-2)][k/K]2a/Ji, (126) 

where K=kF for pF»p03 as in the case of metals with spherical wave symmetry, and K=k0 for 

PF<<PO3-   Although inapplicable, this pure 1/k spectrum is the wave-number equivalent of the 

coherent quantum 1/f noise derived earlier [61], [62] in excellent agreement with the 

experiments on large electronic devices [46].   Due to 2aA«1 the second factor is practically 

unity and of no importance, except for eliminating the logarithmic divergence from the spectral 

integral.   This wave number spectrum also entails a 1/f frequency spectrum obtained by 

writing dk/k=df/f, as was shown in detail in a previous paper [13].   For equal times our result 

can not be expected to be valid, due to the asymptotic character of Eq. (117).  We shall now 

derive the 1/f spectrum directly below. 

If t^f, Eq. (118) is replaced by 

<<I)o!Ty!(x)vs(x)\|/£-(x,)i)/s-(x,)|<&0> = «I>olv^(x)vs(x)l<l)o><cI)olvS,(x')¥s,(x')l(l)o> 

- <*o|Tvs'(x')y£(x)|<S0><tl>olTvs(x)YS,(x,)|<I>o>. (127) 

Eq. (119) remains the same, except for the middle part which is replaced by   the left hand side 

of Eq. (127).   Eq. (120) becomes now 

A(x-x')  =   1   -  (1/n2)VGs(x-x')Gs(x'-x) 
s 

= 1  - (1/N2)I    X{expi[(p-p1)(r-r,)-(p2-p'2)(t.r)/2m]/Fi}np,snp.iS 

s   pp' 

x{p(r-r')/h"-(m2c2 + p2)1/2(t-r)(c/h")}a/71 

x{p'(r-r')/h--(m2c2 + p,2)1/2(t-t,)(c/h-)}a/'t. (128) 
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Here we have used again Eq. (117).  The low-frequency and low-wavenumber part A| of this 

relative density autocorrelation function is also given by the terms with p=p'. 

Ai(x-x')  =  1   -  (1/N2)£ £nP)S 

s    p 

x{p(r-r')/h'-(m2c2 + p2)1/2(t-t')(c/Ii)}2a/* (129) 

= 1    -(2/N2)[V/(27tK)3   Jd3p|(p + Po)(r-r,)/R-[m2c2 + (p + p0)2]1/2(t-t')(c/K)|2a/7t 

P<PF 

=   1   -   (1/N)|p0(r-r')/K-mc2T/h-|2a/n        for   pF«|p03-mc2-c/z|. (130) 

Here we have used the mean value theorem, considering the laJ-n power as a slowly varying 

function of p and neglecting p0 in the coefficient of x =t-t\ with z=|r-r'|.   Writing the power 

again as an exponential function of its logarithm, expanding the resulting exponential, and 

keeping only the first term, we obtain with (h'/m c2)|p0(r-r')/K-mc2T/h'| = e = |x-po(r- 

r')/mc2| 

Ai(x-x')   =   1-[(mc2/h')e]2a/7t/N 

= (1-2/N) + [K/mc2]2a/7l(2a/NK){cos[coe]dcü/cü1-2a/7t. 

{N •2 + (2a/^)J[h-w/mc2]2a/,tcos[coe] dco/ü)}/N. (131 

According to the Wiener-Khintchine theorem, the coefficient of the cos gives the spectral 

density.   To get it for the fractional fluctuations 5n/n, we divide by the constant term N-2 

Ssn/nM - [2a/7iu(N-2)l[h"ü)/mc2]2a/71. (132) 

This result is also applicable for the particle current fluctuation spectrum.   Indeed, for current 

density fluctuations 5j we include a (K/mi)V in front of each of the two y operators in Eq. 

(127), a factor pp'/p0
2 in Eq. (128) after the summation signs, a factor (p/p0)2 in the first 

form of Eq. (129), a factor (p+p0)2/Po2 in the second form, and no changes in Eqs. (130)- 

(131).    Eq. (132) becomes 

Sm(M  - [2tt/WN-2mh-(p/mc212a/*. (13 3) 
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This result coincides with our earlier theoretical result for coherent quantum 1/f noise if we 

replace N with N-2.   The validity of this equation is restricted to low frequencies and wave- 

numbers.   This equation is in excellent agreement with mobility and diffusion 1/f noise in large 

devices. 

Finally, we consider the errors caused by the neglect of higher order terms in the 

expansion of the exponential functions resulting from Eqs. (122)-(123) and (130).    For a 

thermal electron and r=1cm in Eq. (6') we get kr=1012 and (2a/7r)ln(kr)=0.12, yielding  an 

error of 12%.   For t=1017s in Eq. (130), which is the age of the universe, we get an error of 

40% as the upper limit.  Therefore a more exact treatment is of some interest.   Using the 

identity   [60] 

oo 

e2a/n s   [.(2a/n) Jür2a/7tCOS(9co)dü)/co] 

oo 

x{cosa + (2a/^)^(eü)0)2n-2a/7t[(2n)!(2n-2a/u)]-1}-1, (134) 
n=0 

with arbitrarily small cutoff co0, we obtain from Eq. (130) the exact form 

oo 

Ai(x-x')  =  1   +  [(2a/nN) J(mc2/rfü))2a/7Icos(ecü)dco/co] 

oo 

x{cosa + (2a/ji)£(ea)0)2n-2a/7l[(2n)!(2n-2a/7t)]-1}-1. (135) 
n = 0 

This would indicate a co"1"2a;7t spectrum and a 1/N dependence of the spectrum of fractional n 

and j fluctuations, if we neglect the curly bracket in the denominator which is close to unity for 

very small w0.   We thus realize that the unusual N-2 dependence in Eqs. (132)-(133) is 

caused by the forced introduction of the integrable co2^71-1 spectrum in place of the co-i-2a/7t 

spectrum.   Due to the smallness of a both forms coincide in practical applications.   Eq. (133) 

for the coherent QED chaos process in electric currents can thus be written also in the form 

Ssj/jOO   - f2a/7ta)Nlfmc2/R(dl2a/lt - 2a/nuU = 0.00465/coN. (13 6) 

This result derived directly earlier [61], [62], is in excellent agreement with the 

measurements [46], in large {see [62] for a definition of "large" or "extended", and for an 

interpolation with the conventional quantum 1/f chaos effect} devices such as large n+p Hg^ 
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xCdxTe infrared detector diodes.   It is also close to the empirical value of 0.002/coN observed 

earlier by Hooge [63] in semiconductors and metals.  Being observed in the presence of a 

constant applied field, these fundamental quantum current fluctuations are usually interpreted 

as mobility fluctuations. 
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